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ABSTRACT 

Let n => 2 be an integer. We prove the following results that are known in case 
n = 2: The upper and the lower central series of an existentially closed nilpotent 
group of class n coincide. A finitely generic nilpotent group of class n is periodic 
and the center of a finitely generic torsion-free nilpotent group of class n is 
isomorphic to Q+, whereas infinitely generic nilpotent groups do not enjoy these 
properties. We determine the structure of the torsion subgroup of existentially 
closed nilpotent groups of class 2. Finally we give an algebraic proof that there 
exist 2 K non-isomorphic existentially closed nilpotent groups of class n in 
cardinality K _-> N,,. 

O. Notation 

D e n o t e  the class of n i lpo ten t  g roups  of class at most  n by 92. and  the 

subclasses  of to rs ion- f ree  groups  by 92,*, the r r -g roups  in 92, by 92, N L , ~  and 

the groups  in 92,, whose tors ion  subgroups  are  7r-groups,  by 92,.~ where  ~r is a set 

of pr imes .  If G E 92,, we deno t e  the lower  centra l  series of G by G = G~ -> G2 -> 

�9 . .  => G,  _-> G,+I = 1, where  G~+, = [G~, G] ,  and  the u p p e r  centra l  ser ies  of G by 

G = Z .  _-> Zo_~ =>- �9 �9 => Z1 => Z,, = 1, where  Z~+j / Z~ is the cen te r  of G/Z~. W e  

wri te  [x,y] for the  c o m m u t a t o r  x 'y  'xy and adop t  the usual l e f t -normed  

no ta t ion  [x , , , . . . ,x ,~]  for the i t e ra ted  c o m m u t a t o r  [ . . .  [[xo, x~],x2]," .,x,~] and 

[x, /xy]  for  [x, y , . . . ,  y] ,  where  y appea r s  /z t imes.  

Fo r  the basic  facts on a lgebra ica l ly  c losed (a.c.), ex is ten t ia l ly  c losed (e.c.), 

f ini tely gener ic  (f.g.), and  infinitely gener ic  (i.g.) mode l s  the r e a d e r  is r e fe r red  to 

[3]. 

1. Introduction 

Eklof  and Sabbagh  [2] o p e n e d  a new pe r iod  in the s tudy of e.c. groups ,  when 

they showed  that  the class 92~ of A b e l i a n  groups  has a mode l  compan ion ,  

Some results of this paper were contained in [6]. 
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whereas the class of all groups does not. Then Saracino proved that neither the 

class of soluble groups of derived length at most n (n => 2) [13] nor the class of 

nilpotent groups of class at most n (n => 2) [14] has a model companion. As to 

finitely generic groups, Saracino showed that G/G2 in a f.g. metabelian group G 

is periodic and so are the centers Z1 and Z2/Z~ in a f.g. nilpotent group of class at 

most n (n => 2). In the case n = 2 this yields that a f.g. group in 922 is periodic. We 

obtain this result for all n => 2. As i.g. groups in 92, are not periodic, the classes 

of f.g. and i.g. groups in 92, (n-> 2) are disjoint, thus illustrating the non- 

existence of a model companion. 

As to the torsion-free classes 92+ (n >_- 2), Saracino proved the non-existence of 

a model companion in [14], and in [15] that the center of a f.g. group in 92; is 

isomorphic to Q§ We obtain this last result for all n _->2. Thus, in the 

torsion-free case as well, the classes of f.g. and i.g. groups in 92.+ (n => 2) are 

disjoint. 

The class of countable e.c. groups in 92~ was studied independently by 

Baumslag and Levin [1] and Saracino [15]. Up to isomorphism there are only 

countably many countable e.c. groups N1 =< ' "  =< N, < . . .  =< No, (1 < n _-< oJ) in 

92; and the center of N, is isomorphic to the restricted direct product of n copies 

of Q+. Therefore, up to isomorphism there is only one f.g. group in 92~, namely 

NI, and only one i.g. group, namely N,~. We shall prove analogous results for 92_~ 
in a subsequent paper (cf. [6], [10]). 

As f.g. groups in 922 are periodic, Saracino and Wood [16] considered periodic 

e.c. groups in 922 and proved that there is up to isomorphism only one countable 

such group and thus only one f.g. group in 922. As to the number of all countable 

e.c. groups, Hodges [4] proved by recursion theoretic methods that there are 2"  

pairwise non-elementarily equivalent e.c. groups in 92,.. (n => 2, 7r infinite). We 

illustrate this by sketching 2 "~ countable groups in 92,.,, (n => 2, ~ infinite) such 

that a countable group of this class can contain at most countably many of them, 

thus proving the existence of 2 "0 pairwise non-isomorphic countable e.c. groups 

in 92,,,~ (n _->2, 7r infinite). We then consider the case of finite 7r and, for 

simplicity, 7r ={p}. We show that a divisible group F E~I~,., with F,  = 

Zn+l-~,(F), 1 < /x  =< n can be embedded in an e.c. group E such that F/F3 is a 

distinguished subgroup of E/E3. We achieve this by preventing all elements 

from E \ FEz from being p-divisible. This yields 2 K e.c. groups in 92,.p in each 

cardinality K => N0. All cases r O might be treated by the same method. 7r = O 

is the torsion-free case 92,§ where one should expect No countable e.c. groups as 

for 92; and 92;~. 

Let us mention, in passing, that Saracino and Wood [16] showed by means of 
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stability theory that there are 2* non-isomorphic f.g. groups of cardinality K in 

922.~ (n = 21 ~r~ •, K > 1~o). Their proof may be copied at least for the number of 

e.c. groups for all n => 2 and arbitrary ~'. 

We characterize the structure of the torsion subgroup of an e.c. group in 922.~ 

as the direct product of a f.g. group E~ ~ 92,.,~ and a divisible abelian ~r-group 

T ~. In the countable case E~ is unique whereas the p-ranks of T = are arbitrary 

from 0, 1 , . .  ",No. To obtain this result we show that a nilpotent group G can be 

embedded into a nilpotent group H of the same class whose maximal divisible 

subgroup consists of all elements of infinite height. We also study the adjunction 

of roots to e.c. nilpotent groups. 

Saracino noted in [14] that every element in the center of an e.c. group in 92, 

or 92+ (n => 2) is an n-fold commutator. In the case n = 2 this means that the 

center coincides with the commutator subgroup; this was the starting point for 

the classification of the countable e.c. groups in 92~- and the periodic ones in 92z in 

[1], [15], [16]. We prove that the upper and the lower central series in an e.c. 

group in 92, (n -> 2) coincide. This also holds for the subclasses 92 +, 92, n L~,, 

and 92 .... Moreover an element g in the (/z + 1)st term of the lower central series 

is a commutator of the form g=[h, px] in two variables h and x. The 

coincidence of the two natural central series indicates that the existential closure 

of a nilpotent group restricts the freedom of its characteristic and normal 

subgroup lattices. This was implicit in [1] and will be investigated for 92~- in the 

paper announced above (cf. [6], [10]). This homogeneity of an e.c. nilpotent 

group may be co.mpared with the result of Neumann [11] that an e.c. group in the 

class of all groups is simple. 

2. The upper and lower central series 

Let Y/" denote one of the classes 92,, 92, ~, 92, N L ~  or 92,.~ for a set ~- of 

primes and n => 2. We exploit the existential closure of a nilpotent group in Y{ via 

the existence of certain commutator relations. So let us quote the results I, II 

from [8] and III from [4]. 

I. If M =< G ~ Y{, M E 92,. and [M, G] =< G~+2 for m with m(/z + 1) < n, then 

there exists a group H E ~ such that G =< H and that for all g ~ M there are 

h, c E H with g = [h, pc]. If G is periodic, h and c may be chosen periodic too 

([8] Satz 4.2, p. 2185). 

II. If G E Y(, g~,.. -, gk E G, 1 ~ xGz E X <= G/G2, xG2 independent from 

(g~,'",gk)G2 and g~M<=Z such that X-~Q+-~M, then there is a group 



Vol. 46, 1983 GENERIC NILPOTENT GROUPS 173 

H E Y{ such that G -_< H and g = [h, (n - 1)x], [h, g~] = 1 (i = 1 , . . . ,  k) for some 

h ~ H ([8] Folgerung, p. 2183). 

III. If G ~ Y(, xGz has infinite order  in G/G2 and g ~ G,, then there exists a 

group H ~ Y {  such that G_-<H and g = [ h l , . " , h , - l , x ]  for some 

h~,. �9 h,-1 E H ([4] Lemma 4). 

We now prove 

THEOREM 1. The upper and the lower central series of an e.c. group G in Y( 

coincide. I f  g E G~,+I, then g = [h~txc] for some h, c E G. 

PROOF. Let G be an e.c. group in ~ If G = G ~ > G 2 > . " > G , + t = I  

denotes the lower central series and 1 = Zo < Z~- �9 �9 < Z,  = G the upper central 

series of G respectively, we have to show Z._ ,  = G~+t (1 _-< ~ < n). Now '_-' 

holds in a nilpotent group of class n. So let us show ' < '  by reverse induction on 

/~. The case /z = n is trivial, since Z0 = G,§ = 1. /x + 1--*/x: If the assertion 

Z,-~,-I<= G,,+2 holds and g E Z._~, then we have (g)E92~ and [(g), G] _--- 

[Z._~,, G] _<- Z,_,_~ _-< G,+2. The hypothesis of fact I being satisfied, we obtain a 

group H E Y{ such that G ==_ H and g = [h,/~c] for some h, c E H. As G is e.c. in 

Y{ we have such elements in G. Thus g E G,+~ and Z,_~, _-< G,+~, as g was 

arbitrary in Z,_,,. Together  with the induction we have proved the second 

assertion of the theorem. [] 

Observe that we only needed the closure of G with respect to one equation in 

two unknowns, so Theorem 1 also holds for a.c. groups in 5g. If G = 1, then G is 

trivially a.c., but the assertions of the theorem are trivial too. If G #  1 is a.c. in Y/', 

then 1 # Zt = G.  and G ~ 92,-,. As a consequence of Theorem 1 we have that 

the characteristic subgroups G~+I = Z._,. (/z = 0,. �9 n) of an e.c. group in Y{ are 

defined by the 3-formulas 

4,,,+,(x)--- 3 y 3 z  [y, ~z] = x 

and also by the V-formulas 

~,_,,(x) - V y , . . . V y . _ ,  [x, y , , . . . ,  y._,,] = 1. 

We are working in a first-order logic with the language { .,-a, 1} of group 

theory and use group-theoretic notions freely in our formulas. Observe that 

whereas ~,_~, defines Z , - ,  for all groups G, no first order formula can define 

G,,+, for all G E 92. (cf. [5], p. 22). 
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3. Generic groups in 92.,~ for n _-> 2 

The classes 9~.,~ can be axiomatized by Group tJ {Vx0...  Vx.[xo , . . . ,  x.] = 1, 
V x ( x #  1-->xP# 1); pZTr  prime}. So the notion of f.g. groups in 92.,~ is 

meaningful. 

We first discuss the case r r#  O, where periodic elements are allowed. 

THEOREM 2. A f.g. group in ~.,~ (n > 2, 7r# f~) is periodic. The finite and the 

infinite forcing companion are distinguished by an 3V3-sentence. 

The classes of f.g. and i.g. groups are disjoint. 

PROOF. We define first-order formulas for n > 2 

I~n(~) )  ~ V V l  ~ 1 7 6  $ ~ t ) n ~ W l " ' "  ~ lWn- - l [ t ) l ,  ~176 ~ ~,)n] : [ W l ,  ~ ", Wn-I ,  V] 

and 

~ ,  =-- 3vC,.(v). 

(1) ~f ",P', holds in an e.c. group G in ~R,,.,. then G contains an element of inI~nite 

order modulo G2. For if ~ .  holds in G, then there is some x ~ G such that r (x)  

holds in G. Now let y , , - . . ,  y,, ~ G and h , , . . . , h . _ ,  ~ G satisfy [yx,"" ",Y,,] = 

[hi," �9 ", h.-x~ X]. If o([yx,'" ", y.])  > m, it follows from 

1 #  [ y , , . . . , y d  ~" = [ h , , . . . , h , - ; , x l "  = [ h l , . . . , h . - , x ~ ' l  

that o(xGz)~( m, as [G,_x, G2] = 1. Because m can be chosen arbitrarily large in 

the e.c. group G, we obtain o(xG2)= oo. 

(2) I f  G is e.c. in 9~n,, and contains an element of inllnite order modulo Gz, then 
~ ,  holds in G. For it follows from fact III that G satisfies tp. (x) for every x of 

infinite order modulo Gz. 

(3) * ,  does not hold in any f.g. group in 92,... Assume to the contrary that the 

sentence xlt, holds in the f.g. group G. Then it is forced by a forcing-condition p0 

of the diagram of G, i.e. a finite part of the group table, where we do not 

distinguish between group elements and forcing constants. Then p0 forces the 

formula $ , (x )  for some x E G. This means that for all conditions pl D p0 and all 

constants yl, .  �9 y, E G there exists a condition pz D pl which forces the formula 

:7]Wl " " " ~ W n - l [ y l ,  " " ", y n ]  = [ W l , " '  ", Wn-l* X]  

and this holds if and only if p2 forces [y l , . .  ",yn] = [h~,'" ", h,_x,x] for some 

hl, . . ., h,-t E G. 
Let  us choose p~ = po U {x " = 1} for some 7r-number m => 1. Such a number m 
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exists as a finitely generated group H E 92 .... which realizes po, is a residually 

finite 7r-group (cf. [5], 17.2.2), and therefore has a finite f ac to r /~  in 92,,= still 

realizing Po. Here we have used 7r~ •. If we let m be the order of s in H, then pt 

is a condition, because an isomorphic copy of the finite group /~ E 92,,= is 

contained in the e.c. group G. If we now choose y ~ , . . . , y ,  E G such that 

[ y , - . . , y . ] " ~  1, then we come to a contradiction with x "  = 1 as in (1). 

(4) By (2) and (3) the commutator factor group G/G2 of a f.g. group G E 92,,~ 

is periodic. Inductively, all factor groups G~/G,+I are periodic and thus G is 

periodic. 

(5) A n  i.g. group in 92,,~ satisfies ~ , .  As 92.,~ has the joint embedding 

property, we may take an i.g. group H in 92,,,~ containing G and an element of 

infinite order modulo Z._~(H) = H2. Thus ~ .  holds in H by (2) and therefore in 

G, because the i.g. group G is an elementary substructure of the i.g. group H (cf. 

[3 1 , 1.3.4). 

(6) By (5) the 3VZl-sentence ~ ,  is an element of the infinite forcing 

companion of 92 .... whereas by (3) and, as the language is countable, --7 q t  is 

contained in the finite forcing companion (cf. [3], 1.5.19). Because f.g. and i.g. 

groups are models of the finite and infinite forcing companions respectively, 

these two classes are disjoint in 92 .... [] 

We now consider the torsion-free case. Here, by a theorem of Mal'cev, we 

know that a torsion-free nilpotent group can be embedded in a divisible one of 

the same class (cf. [5], 17.3.2). So an e.c. group in 92+ is divisible and, as the 

factors Zi+l/Zi of the upper central series are torsion-free, we have that 

G/G2 = G/Z,_I is a divisible torsion-free abelian group and an element 1 ~ xG2 
lies in a direct factor of G/G2 isomorphic to Q+. 

THEOREM 3. In a f.g. group in 92+, n >--2 the center is isomorphic to Q+, 

whereas in an i.g. group it has infinite dimension (as a Q-space). The finite and 

the infinite forcing companions are distinguished by an 3V3-sentence and the 

classes of f.g. and i.g. groups in 92+ are disjoint. 

Note that Saracino [15] proved that a countable e.c. group in 92 + : is f.g. if and 

only if its center has dimension 1. This follows from the classification of the 

countable e.c. groups in 923. We shall prove it for 923 in the announced paper (cf. 

[lO]). 
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PROOF. 

and 

For d => 1 we define first-order formulas 

daa(u, v,, .  . ", va, w, v) = [w, (n - 1)u] = [v, (n - 1)u] 

AVUo A [Uo, v,l=l---~[Uo, V ] = l  , 
i ~ l  

�9 e - 3 u 3 v , . . .  3oaVw3v([v , , (n  - 1)ul # 1 A 4~e (u, v , , ' '  ", va, w, v)) 

@~ - VuVv ,Vw3v( [v , ,  (n - 1)ul # 1 --> r v~, w, v)). 

(1) If  @a holds in an e.c. group G in ~+, then dim Z <_- d. If @a holds in the 

group G then there are elements x, h,, .  �9 ha E G such that the formula 

( )) Vw3v  [w, (n - 1)x] -- [v, (n - 1)x] ^ Vuo ,A [Uo, h,l = 1 ~  [Uo, v] = 1 

holds in G. This means that for any g E G there exists some h E G which 

satisfies [ g , ( n - 1 ) x ] = [ h , ( n - 1 ) x ]  and which is linearly dependent  of 

(h~, . . . ,ha)  modulo G2 by fact II. Now [ g ' , ( n - 1 ) x l = l  for g ' E G 2  and 

[h', ( n -  1)x I ; [ h , ( n -  1)xl'  for r E Q in the group G E ~ i .  Thus the center 

Z = G ,  of the e.c. group G is spanned by [h , , (n -1 )x ]  (i = l,  - . ., d)  as a 

Q-space and so has dimension at most d. Similarly, one sees that an e.c. group in 

~2 satisfying @~ has center isomorphic to Q+. 

(2) If the center of an e.c. group G in ~ has dimension at most d, then @e holds 

in G. Take some x ~  G2. By fact II we can find h, , .  �9 he ~ G such that the 

elements z~ = [ h , , ( n - 1 ) x ]  (i = 1 , . . . , d )  span the center Z and furthermore 

[h~, (n - 1)x] # 1. Now if g is another element of G, then [g, (n - 1)x] E Z and 

we have for suitable r , , . . - ,  re E Q 

d 

[g,(n - 1 ) x l =  ['[ z;' 
i = 1  

d 

= 1-I [h,, (n - 1)x]" 
i = 1  

where we have set h a , =II,=, h,.. Since centralizers in torsion-free groups are 

isolated (cf. [5], 16.2.9), the element h E G satisfies the formula 

d 

A [ y , h , ] = l - - ~ [ y , h ] = l  f o r a l l y E G .  
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Thus G satisfies ~ .  In case d = 1 the center is spanned by any n-fold 

commutator  different from 1, so we have that ~'1 holds in this case, too. 

(3) The theory of 9~, forces the sentence ~'~. Let a forcing condition p0 and 

constants x, h~, g be given. We have to show that there exists a condition p~ D po 

and a constant h such that p~ forces the formula 

3' - [h~,(n - 1)x] ~ 1--> ~bl(x, h~, g, h). 

Take a group G E 9~. +, that realizes po. If the equation [h~, (n - 1)x] = 1 holds in 

G, then we may set 

p~ =poU{[h~,(n - 1 ) x ]  = 1}, 

and p~ forces 3' for any constant h. 

Now assume that [h~,(n - 1 ) x ] r  1 holds in G. Let us show that we can also 

assume that G has center isomorphic to Q+. First note that G may be supposed 

to be the divisible hull of a finitely generated group, since po is finite. Refining 

the upper central series, the factors of which are finitely generated torsion-free 

abelian groups, we obtain a central series G = N~ > �9 �9 �9 > Nk+~ = 1 of G such 

that all factors are isomorphic to Q+. Now if Z _-> Nk-~, let K be the kernel of a 

homomorphism from Nk-i onto Nk, such that the finitely many inequalities from 

p o U { [ h , , ( n - 1 ) x ] ~ l }  that have to hold in Nk-, still hold in Nk ,/K. Since 

equations are preserved under homomorphisms, the factor group G / K  also 

satisfies the condition po U {[hl, (n - 1)x] r 1}. But as K ---- Q+, G / K  has a central 

series with factors isomorphic to Q+ of length strictly less than k. Thus after a 

finite number of quotients we shall satisfy p0t_J { [h~ , (n -  1)x] r 1} in a group 

G E 92. + with center isomorphic to Q+. 

Now as [ h , , ( n - 1 ) x ] ~  1, we can assume that [ g , ( n - 1 ) x ]  s =  [ h , , ( n -  1)x] k 

for some L k ~ Z, ] r  0 and thus [g, (n - 1)x] = [h, (n - 1)x] for h = hlk/( There- 

fore 

p, = p0O{[h, , (n  - 1)x] ~ 1, [g,(n - 1)x] = [h,(n - 1)x], h s = hf} 

is a condition. Since the inequality [h~ , (n -  1 ) x ] #  1 is contained in p~, the 

condition p~ forces the formula y, if it forces ~b,(x, h~, g, h). Now the first part 

[g, (n - 1)x] = [h, (n - 1)x] of the conjunction ~b~(x, ha, g, h) is contained in p~. 

So let us show that p~ also forces the second one Vuo([U0, h~] = 1 ~ [Uo, hi  = 1). 

For this let p2 D p, be another condition and y a constant, and take a group 

G E ~,+, which realizes p2. 

If the inequality [y, ha] # 1 holds in G, then set p3 = p: O {[y, h~] # 1}. If 

[ y , h ~ ] = l  holds in G, then since h j =  hk, Epz  also [ y , h ] =  1 holds; set p3 = 
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p2 t_J {[y, ht] = 1, [y, h] = 1} in this case. In both cases p3 is a condition that forces 

the formula [y, ht] = 1---> [y, h] = 1. 

With both parts p~ now forces <hi(x, ht, g, h). 

(4) A n  i.g. group G in 92+, has center of infinite dimension. This follows from 

the joint embedding property and so (1) implies that an i.g. group satisfies --1 ~bd 

for all d=>l .  

(5) By (3) and (4) the V3V-sentence dp~ belongs to the finite and "1 ~'~ to the 

infinite forcing companion of 92+,. Therefore the classes of f.g. and i.g. groups in 

92,+ are disjoint. [] 

4. The torsion subgroup of e.c. groups in 92,,~ 

The torsion subgroup of a group G E 92,,~ is the direct product of its maximal 

p-subgroups for p E It. In the case ~- = {p} we shall write 92,.p. Recall that an 

element g is called of infinite height in G, if there is an m-th root for g in G for 

all m => 1. 

We start with some lemmas that may be interesting in their own right. 

LEMMA 4.1. G ~ 92,,~ may be embedded into some H E 92,,~ such that every 

element of infinite height in H lies in a divisible subgroup. 

Paoov. First note that an element of infinite height in G has infinite height in 

any group containing G. Thus by a classical tower argument, it suffices to 

construct a H such that one fixed element x of infinite height in G lies in a 

divisible subgroup of H. This is clear from the compactness theorem. But let us 

also give a group-theoretic proof. 

Take the n-th nilpotent product N of G and infinite cyclic groups (c~) (i E N). 

Then N E 92 .... Consider the normal subgroup K generated by {xc71, c~ci~(~; 
i EN}. We want to show that G N K = 1. An element h E G fq K is a finite 

product of conjugates of the generators. Call k the highest index of a c~ in the 

product for h. Now by hypothesis x has a (k !)-th root in G, g say. The identity 

on G and c~ ~ gr (1 _-< i < k), c~ ~ 1 (i > k) induce a homomorphism from N 

onto G. By choice of the images of the c~ (1 =< i _-< k), h lies in the kernel of this 

homomorphism. On the other hand h E G is mapped identically, hence h = 1. 

Thus G N K = 1, and G is embedded into N/K.  By factoring out the maximal 

~-'-subgroup of N / K  we obtain a factor group N ~ 92.,~ such that still G < ~r 

and x lies in the divisible subgroup (x, ~i ; i E N) of N. [] 

The following is a generalization of the well known facts that quasi-cyclic 
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p-subgroups of a nilpotent group are contained in the center of the torsion 

subgroup and that the torsion subgroup of a divisible nilpotent group is central. 

The results concerning the centralizer of the torsion subgroup were proved 

directly by Warfield [17, theorem 6.13]. 

COROLLARY 4.2. G E 92n,~ may be embedded in some H E 92n.~ such that the 

periodic elements of infinite height in H form a divisible subgroup o[ the center o[ 

the torsion subgroup. Thus, periodic elements o]: infinite height in G are central in 

the torsion subgroup. 

More generally, H may be chosen such that the elements of infinite height [orm 

its maximal divisible subgroup ; this subgroup is contained in the centralizer of the 

torsion subgroup. 

PROOF. By the preceding remark, the divisible subgroups for the periodic 

elements of infinite height in some group H as in the lemma generate a divisible 

subgroup of the center of the torsion subgroup of H. This implies the first 

assertions. 

For the last assertion it suffices to show: if G E 92,, T its torsion subgroup and 

X a subgroup isomorphic to Q+, then X <= C~(T).  Proceeding inductively, we 

may assume that X <= C~(T  N Z ) .  Take any y E T n Z§ Then yq = 1 for some 

q ~  0 and [x, y] ~ T n Z~ for all x ~ X. Hence, if x "  = x in X, it follows that 

[x, y] = I x " ,  y] = [x', y]".  So [x, y] E Z ( T )  for all x ~ X, since [x, y] is a periodic 

element of infinite height. Finally, if x 'q = x in X, we conclude that Ix, y] = 

[x', y]q = [x', yq] = 1. Therefore  X <= C~(T  n z~§ [] 

Mal'cev's theorem that a torsion-free nilpotent group may be embedded into a 

divisible nilpotent group of the same class cannot be generalized to nilpotent 

groups with non-trivial torsion subgroup. So we need some information on the 

existence of roots in nilpotent groups. The following lemma gives such a 

condition for elements in the second center Z2 of a n  e.c. group G in 92 .... We 

denote the centralizer of gl," �9 ", g, in a group H by CH(gl," �9 ", g,) and drop the 

subscript for H = G. 

LEMMA 4.3. Let G be e.c. in 92 .... g~," �9 ", gr E G and g ~ Z2 n C(gl , .  �9 g,). 

There exists an element h E Z2N C(g~ , . ' . , g , )  with h ~ =g,  if and only if 

x E C(g)  for all x E G with x p E C(Z2 O C(g, gl , '"  ", g,)). 

PROOF. We set g0=g.  

Necessity: Let h p = g for some h E Z2 n C ( g l , "  ", gr). If x E G with x p E 

C(Z2 O C(go , "  ", g,)) then 1 = [h, x p ] = [h, x] p = [h p, x] = [g, x]. 
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Sufficiency: By the proof of Theorem 1 it suffices to embed G into a group 

H~92 , . , ,  such that h p = g  for some h E Z 2 ( H )  NCw(gl , . . . , g , ) .  Let H =  

G(2)(c)  be the second nilpotent product of G with an infinite cyclic group (c). 

Let N be the normal subgroup of H that is generated by c~g and 

[c, gl]," �9 ", [c, g,]. Then H E 92 .... c E Z2(H) and N <= Z2(H). We now prove 

G A N = I .  An element h E G A N  can be written in the form h =  

Iq~=,((cPgf,)h,.[c,g,]"'...[c, gr] ", with e~= +1 ,  h ~ E H  and n ~ Z .  Let us 

calculate. 
k 

h = H ( c e g f  ' [(cpgf ', hi]. [c, gT ' ] . . -  [c, g;',] 
i = l  

= (c gy '. [c"g, h'].  [c, g'], 

where e '=E~=le~ E Z ,  h'=lI~=~hT, and g'=II;=lgT'~(gl," "',g,). If we write 

h '  = hG �9 c ~ �9 h" with ha ~ G, l ~ Z and h" E/-/2 then 

h = cP"g~'[g, c p ] (~'). [c p, he][g, he][g, c']. [c, g']. 

We now use the universal property of H :  If F E 92, then any homomorphisms 

]'e : G ~ F and ]', : (c) ~ Z2(F) can be lifted simultaneously to a homomorphism 

f : H --* F. This follows from the fact that H is a factor group of the free product 

G * (c) and from the condition on ft. We shall only use the special case F = G, 

[e = ide and [c a homomorphism which is given by c ~ z E Z2. Since we 

assumed h E G n N any choice of z E Z2 will leave h fixed. From c ~ 1 we 

deduce 

h = g " -  [g, he] and cP~'[g, c p] (~'). [c p, he][g, c'].  [c, g'] = 1. 

If we choose c - z E Z, we obtain z p~' = 1 and o (z)  t pe'. Since z was arbitrary in 

Z we conclude e ' =  0 and hence 

h=[g ,  he] and [c",he][g,c'].[c,g']=l. 

The assertion h = 1 will follow from the hypothesis on g, if we can show that 

h ~ E C ( Z 2 O C ( g o , . . . , g , ) ) .  For this take c - z E Z 2 n C ( g o , . . . , g , ) .  Then 

[g, z'] = 1 = [z, g ' ]  and hence 1 = [z p, he] = [z, he] p = [z, h~]. Now G is embed- 

ded into H/N,  since G n N = 1. If IQ denotes the factor group of H / N  by 

its 7r'-torsion subgroup, we obtain G = < / t E 9 2  .... /~-" = g  and 

E Zz(fI)  N C(go, . . . ,  g,). [] 

We need two results on centralizers in the proof of our next proposition. We 

denote the 7r-isolator of a subgroup H in G by L (H) ;  this is the set of all g E G 

such that some zr-power of g lies in H. 
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Recall that centralizers in a 7r'-torsion-free nilpotent group G are ~-'-isolated, 

i.e. I, ,(C(H)) = C(H). This holds, for example, if G ~ 92 .... 

LEMMA 4.4. Let G be e.c. in 92 .... 

(1) C(Z2)= G:. 

(2) If n = 2 and g E G, then CZ(g): = C(C(g))  = L,((g))Z. 

PROOF. Let us quote a variant of Lemma 3 from Hodges [4]: If G is an e.c. 

group in 92,.,~ and a ,b  E G ,  then there exist g l , " ' , g , - l E  G with 

[ g , , . . . ,  g,_,, a] = 1 ~[g , , . . . , g ._ , ,b]  if and only if bf~L,((a))G2. Setting a = 1 

we obtain bff_ C(G,_,)= C(Z2), if b ~  G2 = L,(1)G2. Hence C(Z2)<= G2, and the 

reverse inclusion holds in every G E 92,. For the second assertion it again suffices 

to show ' _-< ', since g E C2(g). So assume b ~  L,((g))Z. Setting a = g we obtain 

an element x ~ G such that [x, g] = 1 ~ [x, b]. Thus x E C(g) and bf~ C ( x )  >- _ 

C (g ). [] 

Observe that the first assertion says that the centralizer of Z2 is as small as 

possible. It would be interesting to know whether the analogous assertions hold 

for the higher centers. This would imply that Z,, in an e.c. group is defined not 

only by the formula V y , . . . V y , ~ [ x , y , , . . . , y , ] =  1, but also by the formula 

Vyt" " V y , [ y ~ , - . . ,  y~,, x] = 1, since then also 

C(G ) = C ( Z . + , _ . )  = = 

The second assertion tells us that the centralizer of a single element g is rather 

large, as the second centralizer C2(g) of the element is as small as possible. 

Another  aspect of this is that elements are determined by their centralizers as 

precisely as possible: 

COROLLARY 4.5. Let G be e.c. in 922 and g, h E G. Then C ( g ) =  C(h)  if and 

only if (g )Z  = (h)Z. 

PROOF. The condition is clearly sufficient. It is necessary by the lemma, since 

in case ~" = Q we have L,((g)) = (g). [] 

We are now in a position to reformulate our condition for the existence of p-th 

roots of elements in the second center of an e.c. nilpotent group. Although being 

a rather restricted case for n > 2, this will turn out quite useful. In the case n = 2 

it may be looked at as a generalization of the main step in the proof of Mal'cev's 

theorem, namely the adjunction of a p-th root to an element in a torsion-free 

nilpotent group of class 2. Also note that this step is an immediate corollary of 

our proposition. 
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PROPOSITION 4.6. Let G be e.c. in 92n,~ and g E Z2. There exists an element 

h E Z2 such that h p = g if and only if 

(a) n = 2 and g commutes with every element of order p or 

(b) n => 3 and g commutes with every element of order p modulo G2. 

PROOF. By Lemma  4.3 we have the existence of such an h if and only if g 

commutes  with every element x that satisfies x p E C(Z2 N C(g)). 

If n=>3 we have gEZ2<=G2 and C(g)>=C(G2)>=Z2. Hence x P E  

C(Z2 f) C(g)) is equivalent to x p E C(Z2) = G: by Lemma 4.4. 

In the case n = 2 we have Z2 = G and again by Lemma  4.4 the range of x p 

becomes C2(g)=I~,((g))Z. We assume that [g ,x]~  1 for some x with x P E  

I~,((g))Z and show that there exists some element x" of order p with [g, x"] ~ 1. 

From the hypothesis it follows that x ~ E (g )Z  for some 7r '-number q and hence 

x ~ = g~z with some k E Z and z E Z. Since extraction of 7r'-roots is unique in 

the 7r'-torsion-free group G E 9~2,~ and [g,x q] = 1 would imply [g,x] q = 1 and 

[ g , x ] =  1, we can replace x by x q and assume q = 1. Now [g,x] p = [ g , x  p] = 

[g, gkz] = 1 and [g,x] k = [gk, x] = [xPz-~,x] = 1. Since [g , x ]~  1 we have p I k, 

so k = pk'. If we take x ' =  xg -~', then [g, x'] = [g, xg -k'] = [g,x] ~ 1 and 

x 'p = xPg-Pk'[g -k', x] (~) = z .  [g-k,, x] (~) E Z. 

Finally we set x" = x ' z"  with z" a p- th  root of x '-P in the divisible center Z. Then 

[g, x"] = [g, x ']  ~ 1 and x "~ = x'~ "p = 1. [] 

We are now ready to investigate the periodic elements of infinite height in an 

e.c. group in 92 .... 

PROPOSITION 4.7. Let G be e.c. in 92,,,, and T its torsion subgroup. The set I of 

periodic elements of infinite height in G is a divisible subgroup of the center Z (  T) of 

T and allows a decomposition I = T, • T ~, where T ~ denotes a divisible subgroup 

of periodic elements which are non-central in G. 

In the case n = 2 we have Z ( T ) =  I = T, • T ~. 

PROOF. First recall that periodic elements of infinite height lie in the center of 

T, so I C Z (T) .  Now by Corollary 4.2 we can embed G into some H ~ 92,.,, such 

that the periodic elements of infinite height in H form a divisible subgroup of H 

which clearly contains L Hence  I is a subgroup, since G is e.c., and every 

element of the p-socle of I has infinite height in H and thus in G, again by the 

existential closure of G. Therefore  I is divisible. 

Note that Z (3 T = G,  fq T is divisible and equal to T, by fact I. So T, is 

contained in /, and we obtain a decomposit ion I = T. • T = where T ~ is a 
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divisible periodic subgroup and consists of non-central elements, since Z n T = 

T.. 
If n = 2 it follows from the previous proposition that Z ( T )  is divisible and 

hence Z ( T )  = I. [] 

In the case n = 2 we now give a full characterisation of T. Saracino and Wood 

[16]. proved that T is f.g, if and only if Z ( T )  = T2, which is our case T ~ = 1. 

THEOREM 4. Let G be e.c. in ~2,~. The torsion subgroup T has a decomposition 

as a direct product T = E~ • T ~ of a f.g. group E ,  in ~2,~ - -  this is the same as a 

periodic e.c. group in ~ , ~  - -  and a divisible subgroup T ~ of non-central elements 

with respect to G. 

I f  G is countable then E,~ is the direct product of the unique countable fig. groups 

in ~z,p for p E ~r and thus is itself unique up to isomorphism. The ranks of the 

p-components of T ~ are the only invariants of the torsion subgroup in a countable 

e.c. group in ~2,~. 

PROOF. As the 

p-subgroups for p 

torsion subgroup T is the direct product of its maximal 

7r and as a direct product of e.c. p-groups in ~2.p for p E 7r 

is e.c. in 922,~ (cf. [7] Satz 5) we may restrict ourselves to the case 7r = {p}. 

Let T = be a divisible subgroup such that Z ( T )  = 7"2 • T ~ as in Proposition 4.7. 

Since T2 fq T = = 1 and T = is divisible, T ~ is embedded isomorphically onto a 

direct factor of T/T2. If we denote the inverse image of a complement  of T = in 

T/T2 by Ep, then the first assertion T = E~ • T ~ follows from T ~ <= Z ( T ) .  

Let us now show that Ep is indeed f.g. in 9~2.p. Since Ep/T2 contains no 

elements of infinite height, every element is contained in a subgroup generated 

by a finite set yl," �9 ", y,. of linearly independent  elements mod T2 such that (y~T2) 

is pure in Ep/T2 (i = 1 , . - . , m ) .  Then y~, . . . ,y,~ generate the direct factor 

(y~T2) • "" • (ymT2) of E, /T2  and moreover  of G/G2. In this situation the main 

tool of Saracino and Wood [16, lemma 2.1] still works: Given any z E T2 such 

that o(z )[o(y iT2)  one has an automorphism tp of G sending y~ to y~z and 

leaving y2,' �9 ", ym invariant. A split extension of G by such an automorphism ~b 

then yields the commuta tor  equations [y,, ~b] = z and [y,, 4]  = 1 (i = 2 , - -  -, m)  

while being still in ~2,p. With this in mind it is also easy to check directly that Ep 

satisfies the axioms [16, remark  3.10] for an f.g. group in ~2,p. The other 

assertions are now immediate from the result of Saracino and Wood [16] that, up 

to isomorphism, there is only one countable f.g. group in 922,v. [] 

In the next section we shall prove that the p - rank  of T ~ can assume all cardinal 

numbers.  
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5. The number of countable e.c. groups in ~.,p 

By means of recursion theoretic methods Hodges [4] showed that for infinite 7r 

there exist 2 "o non-elementarily equivalent countable e.c. groups in 9~ .... Let us 

embark on this question from a more algebraic point of view and consider the 

number of non-isomorphic e.c. groups. For any set X C ~ Hodges constructed a 

group Gx E ~)~.,~ with an element g that is X'-divisible, but not X-divisible 

rood/42 for any H E ~.,~ containing G• A similar group was studied by B. H. 

Neumann and Wiegold [12]. Now each Gx may be embedded in a countable e.c. 

group in ~.,~ ; however, a countable group can contain at most countably many 

of them. Thus there must exist 2 "o non-isomorphic countable e.c. groups in 9~.,~ 

for each infinite ~. 

Let us now deal with the case that 7r is finite and assume for simplicity 

7r = {p}. Notice that our method will work for any 1r~ Q. Here we start with a 

divisible group F E 92.,p and embed F into an e.c. group G E ~. , ,  of the same 

cardinality in such a way that the subgroup of G/G3 which is generated by the 

divisible elements rood G2 is isomorphic to F/F3. This will also answer the 

question left open after Theorem 4. 

Assume F E ~,.p and F divisible. 

*(L): F =< L E ~,,p, L p'-divisible; for g E L \ FL2 there exists y E L such 

that [g, y] ~ Z,-2(L) and o(y)  = p '+"~gL2), 

where we denoted by h the p-height, i.e. for g E G we have h(g) = p, if g has a 

p~-th root in G but not a p"+Lst one. 

The following lemma shows that *(L) prevents elements of L from becoming 

p-divisible. 

LEMMA 5.1. Let L <=ME~,,e with *(L). Then h(gM2) = h(gL2) for all 

g EL.  Also a relativized version of *(L) holds: 

*(L, M): F ~ L <= M E 9~,. e, L p'-divisible ; for g E L \ FM2 there exists 
y E L such that [g, y] ~ Z,-2(M) and o(y)  = p,+h~gL~) 

PROOF. From L A M2>=L2 we have that LM2/M2~L/ (L  AM2) is a 

homomorphic image of L/L2 and h(gM2) >= h(gL2). Suppose that ' > '  holds for 

some g E L. As FL2/L2 is divisible, it follows that g E L  \ FL2. Hence *(L) gives 

us y E L such that [g, y] E Z.-2(L) and o(y)  = p,+n{~L~). From L (3 Z,_2(M)<= 

Z,-2(L) we conclude that [g, y] E Z,-2(M). By assumption there exist x E M, 

c E Mz such that x"c = g and p'+h~L2) I m. This yields the contradiction modulo 

Z.-2(M) >-" M3 

1 ~  [ g , y ]  =[xmc, y ] = [ x " , y l = [ x , y ]  " = [ x , y " ]  = 1. 
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Thus h(gM2) = h(gL2) for all g E L. The  assertion *(L, M )  is now easy. [ ]  

The next lemma shows that *(L)  can be lifted. 

LEMMA 5.2. Let L <=M=(L ,x~ , . . . , x k )  with *(L ,M) .  Let * :M-->M/M2 

denote the canonical projection. 

(1) There exist a t , " ' , a s E M  such that M = ( L ,  a l , . . . , a s >  and M * =  

L* x ( a * ) x . . ,  x (a*). 
(2) There exists a group N >= M with *(N). 

(3) If *(L~) and L, <-_L~ hold for ot < f l  < r, then * ( U ~ < , L ~ )  holds. 

PROOF. (1) Choose  r =< s _-< k and a l , . . . ,  as E M such that  

M = (L, a , , . .  ", as), <a , , . .  ", as)* = < a * ) x . . .  x (a*) ,  

o(a *) < . . .  <= o(a *) < oo minimal and o(a *+l) . . . . .  o(a *) = 0% s - r minimal. 

We first prove that (L, al," �9 ", a,)* n (a,+~, �9 �9 as)* = 1. So let 

a E (a,+t, �9 �9 ", as) and a * "  E (L, at," �9 ", a,)*. Since the a*  are periodic for i _-< r 

we may assume a * "  ~ L* 

If a*m E F* we may further  assume that a * "  lies in the torsion-free direct 

factor  of the divisible abelian g roup  F*.  Then  there exists f E F such that 

f * - "  = a*" ,  or  (af)*" = 1. As the torsion-free rank of ( a , + l , ' '  ", a,>*/(a)* is less 

than s - r, if a*  ~ 1, we obtain  f rom the minimality of s - r that  a* = 1. 

Thus we are left with the case a*  " E L* \ F*.  There  exists c E ME such that 

a"~cEL\FM2.  From * ( L , M )  we obtain an e lement  y E L  with 

[ a " c , y ] E Z ,  :(M) and o ( y ) = p  l+"t"mcL2~. If m =p"t  with ( p , t ) =  1, it follows 

f rom [a, y " ]  ~ Z ,  2(M) that  o ( y ) / ~ p " ,  or  u <-_ h(a"cL2). Since L is p'-divisible 

there exists x @ L with x - "  -- a ' c  mod  L2 and hence  (ax)* " = 1. As  above this 

implies a*  -- 1, now contradict ing a * " ~  F*.  Thus  we have proved  

M* =(L,  a l , ' " , a , ) *  x(a,+~>x--, x(a*>. 

Let  us consider (L, al," �9 -, a,>* and prove that  (L, az," �9 ", a,>* n (at)* = 1. 

Assume  a*" E{L,  a2, . . . ,a , )* .  Since o(a*)<=o(a*), 1 <=i <=r, there is an ele- 

ment  a E ( a 2 , . . . , a , )  such that  ( a l a ) * m E L  *. As above we obtain  in this 

si tuation an e lement  x E L satisfying (a lax )*"= 1. The  minimality of o(a*) 

now yields together  with <L, atax," �9 ", a,) = (L, al," �9 ", a,> that  aT"  = 1. Induc-  

tively we now obtain 

(L, a l , . . . , a , ) *  = L*  x ( a * ) x . . ,  x ( a * )  

and hence  the first assert ion holds true. 
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(2) We proceed by induction on s and construct a group N-> M such that 

(L, a~) < O <= N = ( O, a2, " "', as) E 92,.p and *(O, N)  hold. This yields simultane- 

ously the case s = 1 and the induction step s -  1 ~ s. 

For the construction we need finite p-groups K = K ( m ) E ~ , . p  with an 

element c,, ~ K2, o ( c , , , )  --  o ( c , . K 3 )  = pro, and K,, = Z,,+I-~(K) for 1 _-</x =< n. The 

group K can be chosen, for example,  as a group of upper  triangular matrices 

over Z/p " Z. Taking K '  ~- K, we then also see easily that *(K • K ' ,  M x K x K ' )  

holds (cf. below). Further, let us distinguish an element f " ~  K '  with o ( f  ~ = 
0 I 0 (f K2) = p".  

We first deal with the case that a* is periodic. 

If o(a*) = p ' ,  there exist by Folgerung p. 2183 in [7] h E ~ E ~ll,.p such that 

M x K x K '  =< e#, [a~, h ] = c,, E K, [L, h ] = 1, 0 (h) = 0 (c,,K3) = p" .  As the tor- 

sion group of ~ is a p-group,  we may assume that a# is p'-divisible. We take 

P = (L, a~,K x K', hf~  < o~, O the p'-divisible closure of P in ~, and N = 

(O, a2, " " ,  as) <= ~. It is then clear that M < N  and O is p'-divisible. We now 

check the last clause of *(O, N). 

Let g'E O \FN2 and assume first that g '~  P \ FN2. Then g ' =  gafh' mod N2 

with some g E L, a E (aj), f E K x K', h' ~ (hf~ and we may suppose that the 

decomposit ion is chosen with a of maximal height mod 02. It follows that 

l=h(g'O2) is the minimum of the respective heights of g,a,f,h'modO2, 
because 

0/02 ~-- (L, al)O2/O2 x (K x K')Q2/Q: x (hf~ 

If 1 = h(gQ2)< h(aQ2) we obtain y E L  with [g,y]EZ,-2(M) and o ( y ) =  

p l.,t~L~) = p,+~ f r o m  *(L, M). As h(a02)> 1, it follows that [a, y] E 03 and hence 

[ g ' , y ]  = [g,y]  ~Z._ffN). The cases l =  h([02) and I =  h(h'02) can be dealt 

with similarly with *(K x K ' ,  M x K x K') .  If I = h(aQ2), then a = a~mod  Q2 

for u = p~. Set v = o(h)/p'C As o([a,, h]) = o(h) ,  we conclude that o([a, h~]) = 

o ( [ a , , h ] " ~  and [a,h o]~Z._dK). Since [a,K']=l and 

[h,K x K']fqK2 = 1, we obtain [a,(hf~ and o((hf")~)=p TM 

If now g'E O \FN2, then g "  EP\FN2 for some m prime to p. We choose 

y E L  for g "  with [g",y]~Z,_2(N) and o(y)=p '§ Then also 

[g',  y] E Z,_ffN), since Z,-2(N) is p '-isolated, and the p-heights of g '  and g "  

are the same mod 02. 
Finally consider the case that a'~ is torsion-free. We then choose ~ as above, 

but with h,, E ~ for all m -> 1, such that 

[a,,h,,]=c,., ~ > - M •  ) 
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and proceed analogously with P = (L, a , ,K(m)  x K ( m ) ' ,  h,,f~ m >= 1). 

(3) This is easy by Lemma 5.1. [] 

Let us now digress briefly to the question of the last section. 

PROPOSITION 5.3. Let r be a cardinal number. There exists an e.c. group E in 

922,p such that the rank of T ~ is r. 

PROOF. We start with a group from [12]. Let A ~ B -~ Z(p ~) and 4' : A ~ B 

an isomorphism. Then x : {a ~ aa*, b ~ b} defines an automorphism of A • B 

and the split extension Tt of A • B by (x) lies in ~2,p. Further *(T 0 holds for 

F -- A and similarly *(TK) for AK, where TK and A.  denote the restricted direct 

products of K copies of T~ and A respectively. Using the previous lemmas T. 

can be embedded by the standard procedure ([3] proposition 1.1.3) into an e.c. 

group E E922,, with *(E). Thus the maximal divisible subgroup of E/E2 is 

TKE2/E2 ~- AK and has rank K. [] 

The same argument yields our final theorem, since there exist 2 K divisible 

torsion-free groups F E 92,,p of cardinality K -> No such that the factor groups 

F/F3 are non-isomorphic. 

THEOREM 5. In 92n,p there exist 2 K e.c. groups of cardinality K >= No. More 

precisely, for every divisible torsion-free F E 92~,p of cardinality K with F. = 

Z.+I-.(F), 1 <= tx <= n there exists an e.c. group E E 92..p of cardinality K such that 

F/F3 is isomorphic to the subgroup of E/E3 generated by those elements of E \ E2 

which are divisible mod E2. 
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